Nanoelectronics and Microsystems
Nanoelectronics holds some answers for how we might increase the capabilities of electronics devices while we reduce their weight and power consumption. Improving display screens on electronics devices. This involves reducing power consumption while decreasing the weight and thickness of the screens. Increasing the density of memory chips. Researchers are developing a type of memory chip with a projected density of one terabyte of memory per square inch or greater. Reducing the size of transistors used in integrated circuits. One researcher believes it may be possible to "put the power of all of today's present computers in the palm of your hand”. Microelectronics is one of the main subfield of electronics. As the name indicates, microelectronics is highly related to the study and manufacture of microfabrication of very small electronic components. Micro-sensors that combine optical and mechanical sensor functions with integrated electronic signal processing are rapidly growing in areas such as safety, health, environmental monitoring, and energy control. Relevant examples are collision sensors for airbags and instruments for endoscopy. The global market for nanoelectronics is expected to reach $409.6 billion by 2015, as stated by the new market research report. Nanoelectronics is expected to exercise a considerable influence on semiconductors, displays, memory and storage devices and communication devices.
Related Conference of Nanoelectronics and Microsystems
9th International Conference on Nanomedicine and Nanotechnology
34th International Conference on Nanomedicine and Nanomaterials
41st International Conference on Advanced Nanotechnology & Nano Electronics
Nanoelectronics and Microsystems Conference Speakers
Recommended Sessions
- Advance Nanomaterials
- Applications of Nanotechnology
- Industrial Nanotechnology
- Nano-Micro Electronics, Metamaterials and Quantum Technology
- Nanoelectronics and Microsystems
- Nanofabrication and characterization
- Nanomedicine and Nanobiotechnology
- Nanophotonics and Plasmonics
- Nanotechnology in energy and environment
- System Engineering, Computer Technologies, Telecommunications Engineering, Signal Technology
Related Journals
Are you interested in
- 2D Materials in Nano Electronics: Beyond Graphene - Advanced Nano 2026 (France)
- Advanced Nano Fabrication, Lithography & Patterning Technologies - Advanced Nano 2026 (France)
- Advanced Nanomaterials - Nanomaterials 2026 (UK)
- Advanced Nanomaterials & Functional Surfaces - Nano 2026 (UK)
- AI-Integrated Nanotechnology & Future Systems - Nano 2026 (UK)
- Applications of Nanomaterials - Nanomaterials 2026 (UK)
- Applications of Nanotechnology - Nanomaterials 2026 (UK)
- Artificial Intelligence for Nano Design & Characterization - Advanced Nano 2026 (France)
- Bio-Nanotechnology & Molecular Engineering - Nano 2026 (UK)
- Bio-Nanotechnology & Nano Interfaces with Living Systems - Advanced Nano 2026 (France)
- Biomedical Nanomaterials - Nanomaterials 2026 (UK)
- Carbon Nanotube & Nanowire Electronics for Ultra-Dense Circuits - Advanced Nano 2026 (France)
- Carbon Nanotubes & Graphene Innovations - Nano 2026 (UK)
- Characterization & Properties of Nanomaterials - Nanomaterials 2026 (UK)
- Energy Nanotechnology & Storage Solutions - Nano 2026 (UK)
- Environmental Nanotechnology & Remediation - Nano 2026 (UK)
- Future Trends in Nano Electronics & Industry Translation - Advanced Nano 2026 (France)
- High-Performance Nano-MEMS & Nano-Actuators - Advanced Nano 2026 (France)
- Materiomics - Nanomaterials 2026 (UK)
- Nano Devices & Systems - Nanomaterials 2026 (UK)
- Nano Electronics for 5G, 6G & Next-Gen Communication Networks - Advanced Nano 2026 (France)
- Nano Electronics Security, Privacy & Anti-Tamper Technologies - Advanced Nano 2026 (France)
- Nano Robotics & Molecular-Scale Machines - Advanced Nano 2026 (France)
- Nano Sensors, Nano Biosensors & Ultra-Sensitive Detection - Advanced Nano 2026 (France)
- Nano-Coatings & Surface Modification - Nano 2026 (UK)
- Nano-Electronics & Quantum Devices - Nano 2026 (UK)
- Nano-Enabled Energy Harvesting and Storage Systems - Advanced Nano 2026 (France)
- Nano-Enabled Flexible, Stretchable & Wearable Electronics - Advanced Nano 2026 (France)
- Nano-Medicine & Targeted Drug Delivery - Nano 2026 (UK)
- Nano-Robotics & Intelligent Systems - Nano 2026 (UK)
- Nano-Sensors & Smart Diagnostics - Nano 2026 (UK)
- Nanocosmetics - Nanomaterials 2026 (UK)
- Nanoelectronic Devices - Nanomaterials 2026 (UK)
- Nanofabrication & Nanoscale Engineering - Nano 2026 (UK)
- Nanomaterial Safety & Regulatory Affairs - Nanomaterials 2026 (UK)
- Nanomedical Devices - Nanomaterials 2026 (UK)
- Nanoparticles - Nanomaterials 2026 (UK)
- Nanophotonics & Optoelectronic Applications - Nano 2026 (UK)
- Nanophotonics, Plasmonics & Light-Manipulating Nano Devices - Advanced Nano 2026 (France)
- Nanoscale Materials - Nanomaterials 2026 (UK)
- Nanostructures - Nanomaterials 2026 (UK)
- Nanotech Consumer Products - Nanomaterials 2026 (UK)
- Nanotechnology for Smart, Adaptive, and Self-Healing Materials - Advanced Nano 2026 (France)
- Nanotechnology in Space, Aerospace & Extreme Environments - Advanced Nano 2026 (France)
- Nanotoxicology & Safety Assessment - Nano 2026 (UK)
- Nanoymes - Nanomaterials 2026 (UK)
- Neuromorphic Nano Electronics & Brain-Inspired Architectures - Advanced Nano 2026 (France)
- Polymer Nanocomposites & Advanced Materials - Nano 2026 (UK)
- Quantum-Driven Nano Devices for Next-Generation Computing - Advanced Nano 2026 (France)
- Spintronics, Magnetoresistance & Nano Magnetic Devices - Advanced Nano 2026 (France)
- Sustainable Nanotechnology & Green Nano Manufacturing - Advanced Nano 2026 (France)
